NATO CCMS Pilot Study on Clean Products and Processes 2003 Annual Meeting, May 11 - 15, 2003 Hotel San Michele, Cetraro, Italy

Development and Integration of New Processes for Greenhouse Gases Management in Multi-Plant, Chemical Production Complexes

T. A. Hertwig^a, A. Xu^b, D. B.Ozyurt^b, S. Indala^b R.W. Pike^b, F. C. Knopf^b, J. R Hopper^c, and C. L. Yaws^c

a IMC Phospates, Uncle Sam, LA 70792, tahertwig@imcglobal.com

b Louisiana State University, Louisiana State University, pike@che.lsu.edu, axu1@lsu.edu, knopf@che.lsu.edu

c Lamar University, Beaumont, TX 77710, hopperjr@hal.lamar.edu, yawscl@hal.lamar.edu

Abstract

The Chemical Complex and Cogeneration Analysis System is an advanced technology for energy conservation and pollution prevention. This System combines the Chemical Complex Analysis System with the Cogeneration Design System. The Chemical Complex (Multi-Plant) Analysis System is a new methodology that has been developed with EPA support to determine the best configuration of plants in a chemical complex based the AIChE Total Cost Assessment(TCA) for economic, energy, environmental and sustainable costs and incorporates EPA Pollution Assessment Methodology (WAR algorithm). The Cogeneration Design System examines corporate energy use in multiple plants and determines the best energy use based on economics, energy efficiency, regulatory emissions and environmental impacts from greenhouse gas emissions. It uses sequential layer analysis to evaluates each plant's current energy use as at an acceptable level or cost-effective improvements are possible. It includes cogeneration as a viable energy option and evaluates cogeneration system operating optimally.

The System uses a Windows graphical user interface. The process flow diagram for the complex is constructed, and equations for material and energy balances, rate equations and equilibrium relations for the plants entered and stored in the Access database using interactive data forms. Also, process unit capacities, availability of raw materials and demand for product are entered in the database. These equations give a complete description to predict the operations of the plants. The format for the equations is the GAMS programming language that is similar to Excel. The input includes incorporating new plants that use greenhouse gases as raw materials.

The System has been applied to an agricultural chemical production complex in the Baton Rouge-New Orleans Mississippi river corridor. Ammonia plants in this complex produce an excess of surplus of 0.65 million tons per year of high quality carbon dioxide that is being exhausted to the atmosphere. A new catalytic process that converts carbon dioxide and methane to acetic acid can use some of this excess, and preliminary results showed that replacing the conventional acetic acid process in the existing complex with the new process gave a potential savings of \$750,000 per year for steam, 275 trillion BTUs per year in energy, 3.5 tons per year in NO_x and 49,100 tons per year in carbon dioxide emissions.

This System was developed in collaboration with process engineers and is to be used by corporate engineering groups for regional economic, energy, environmental and sustainable development planning to accomplish the following: energy efficient and environmentally acceptable plants and new products from greenhouse gases. With this System, engineers will have a new capability to consider projects in depths significantly beyond current capabilities. They will be able to convert the company's goals and capital into viable projects that are profitable and meet energy and environmental requirements by developing and applying a regional methodology for cogeneration, and conversion of greenhouse gases to saleable products.

The Advanced Process Analysis System is used to perform economic and environmental evaluations of a plant. The main components of this system are a flowsheeting program, an on-line optimization program, a chemical reactor analysis program, a heat exchanger network design program, and a pollution assessment module. A Windows interface has been used to integrate these programs into one user-friendly application. An accurate description of the process is obtained from process flowsheeting and on-line optimization. Then an evaluation of the best types of chemical reactors is performed to modify and improve the process, and pinch analysis is used to determine the best configuration for the heat exchanger network and determine the minimum utilities needed for the process. The pollution index evaluation is used to identify and minimize emissions. A tutorial has two plant simulations and two actual plants.

The Advanced Process Analysis System has been applied to actual plants including the alkylation plant at the Motiva refinery in Convent, Louisiana and sulfuric acid contact plant at IMC Agrico's agricultural chemicals complex in Uncle Sam, Louisiana. Detailed plant descriptions of the refinery alkylation process and the contact sulfuric acid process were used with the System in collaboration with the process engineers from these companies. This ensured that the programs work on actual plants and meet the needs and requirements of the process and design engineers.

These programs and users manuals with tutorials can be obtained from the LSU Minerals Processing Research Institute's web site, www.mpri.lsu.edu at no charge. The staff of the Minerals Processing Research Institute can provide assistance in using these programs. Development and Integration of New Processes for Greenhouse Gases Management in Multi-Plant, Chemical Production Complexes

T. A. Hertwig, A. Xu, D. B.Ozyurt, S. Indala R.W. Pike, F. C. Knopf, J. R Hopper,and C. L. Yaws

> A joint industry-university research effort IMC Phosphates, Motiva Enterprises, Louisiana State University, Lamar University

Sponsored by U. S. Environmental Protection Agency

NATO CCMS Pilot Study on Clean Products and Processes 2003 Annual Meeting, May 11 - 15, 2003 Hotel San Michele, Cetraro, Italy

LSU Mineral Processing Research Institute

All of the information given in this presentation is available at www.mpri.lsu.edu

Background

Pollution prevention

- was an environmental issue
- now a critical business opportunity

Long term cost of ownership must be evaluated with short term cash flows

Companies undergoing difficult institutional transformations Emphasis on pollution prevention has broadened to include: Total (full) cost accounting Life cycle assessment Sustainable development Eco-efficiency (economic and ecological)

Broader Assessment of Current and Future Manufacturing in the Chemical Industry

Driving forces

ISO 14000, "the polluter pays principle" Anticipated next round of Federal regulations associated with global warming Sustainable development

Sustainable development

Concept that development should meet the needs of the present without sacrificing the ability of the future to meet its needs

Sustainable development costs - external costs

Costs that are not paid directly Those borne by society Includes deterioration of the environment by pollution within compliance regulations.

Koyoto Protocol - annual limits on greenhouse gases proposed beginning in 2008 - 7% below 1990 levels for U.S.

Overview of Presentation

Chemical Complex and Cogeneration Analysis System for multi-plant chemical production complexes

Advanced Process Analysis System for operating plants

Chemical Complex and Cogeneration Analysis System

Objective: To give corporate engineering groups new capability to design:

 New processes for products from greenhouse gases

 Energy efficient and environmentally acceptable plants

Introduction

- Opportunities
 - Processes for conversion of greenhouse gases to valuable products
 - Cogeneration
- Methodology
 - Chemical Complex and Cogeneration Analysis
 System
 - Application to chemical complex in the lower Mississippi River corridor

Related Work and Programs

- Aspen Technology
- Department of Energy (DOE)
 <u>www.oit.doe.gov/bestpractice</u>
- Environmental Protection Agency (EPA) <u>www.epa.gov/opptintr/greenengineering</u>

Chemical Complex and Cogeneration Analysis System

Chemical Complex Analysis System

Determines the best configuration of plants in a chemical complex based on the AIChE Total Cost Assessment (TCA) and incorporates EPA Pollution Index methodology (WAR) algorithm

Cogeneration Analysis System

Determines the best energy use based on economics, energy efficiency, regulatory emissions and environmental impacts from greenhouse gas emissions.

Structure of the System

AIChE Total Cost Assessment

-Includes five types of costs: I direct, II overhead, III liability, IV internal intangible, V external (borne by society sustainable)

- Sustainable costs are costs to society from damage to the environment caused by emissions within regulations, e.g., sulfur dioxide 4.0 lb per ton of sulfuric acid produced
- Environmental costs compliance, fines, 20% of manufacturing costs
- Combined five TCA costs into economic, environmental and sustainable costs

economic - raw materials, utilities, etc

environmental - 67% of raw materials

sustainable - estimated from sources

Illustration of Input to the System for Unit Data

Typical Cogeneration Results on the CHP Diagram

Comparison of Power Generation

	Conventional	Cogeneration
Operating efficiency	33%	77%
Heat rate (BTU/kWh)	>10,000	5,000-6,000
NO _x emission (lbs of NO _x / MWh)	4.9	0.167
CO_2 emission (tons of CO_2 / MWh)	1.06	0.30

Plants in the lower Mississippi River Corridor

Expanded Agricultural Chemical Complex

Plants in the lower Mississippi River Corridor, Base Case. Flow Rates in Million Tons Per Year

Some Chemical Complexes in the World

Continent	Name and Site	Notes
North America	 Gulf coast petrochemical complex in Houston area (U.S.A.) and Chemical complex in the Baton Rouge-New Orleans Mississippi River Corridor (U.S.A.) 	 Largest petrochemical complex in the world, supplying nearly two-thirds of the nation's petrochemical needs
South America	 Petrochemical district of Camacari-Bahia (Brazil) Petrochemical complex in Bahia Blanca (Argentina) 	•Largest petrochemical complex in the southern hemisphere
Europe	•Antwerp port area (Belgium) •BASF in Ludwigshafen (Germany)	 Largest petrochemical complex in Europe and world wide second only to Houston, Texas Europe's largest chemical factory complex
Asia	 The Singapore petrochemical complex in Jurong Island (Singapore) Petrochemical complex of Daqing Oilfield Company Limited (China) SINOPEC Shanghai Petrochemical Co. Ltd. (China) Joint-venture of SINOPEC and BP in Shanghai under construction (2005) (China) Jamnagar refinery and petrochemical complex (India) Sabic company based in Jubail Industrial City (Saudi Arabia) Petrochemical complex in Yanbu (Saudi Arabia) Equate (Kuwait) 	 World's third largest oil refinery center Largest petrochemical complex in Asia World's largest polyethylene manufacturing site World's largest & most modern for producing ethylene glycol and polyethylene
Oceania	 Petrochemical complex at Altona (Australia) Petrochemical complex at Botany (Australia) 	
Africa	petrochemical industries complex at Ras El Anouf (Libya)	one of the largest oil complexes in Africa

CO₂ Emissions from Industries

from EIA, 2001

Carbon Dioxide Emissions and Utilization

(Million Metric Tons Carbon Equivalent Per Year)

CO ₂ emissions and utilization	Reference
	IPCC (1995)
Total CO ₂ added to atmosphere	
Burning fossil fuels 5,500	
Deforestation	
	EIA (2002)
Total worldwide CO ₂ from consumption and flaring of fossil	
fuels	
United States	
China 1,000	
Russia	
Japan	
All others	
1,520	Stringer (2001)
U.S. CO ₂ emissions	
Industry 792	
Buildings 440	
I ransportation 3,258	
lotal	
	EIA (2001)
U.S. industry (manufacturing) ₆₃₀	
Chamical and refinence (BD)	MCManon (1999)
Chemical and refinery (BP) Combustion and flaving 627	
Compustion and haring	
Noncompustion direct CO ₂ emission 3%	
	Hertwig et al. (2002)
Agricultural chemical complex in the lower Mississippi River	
	Arokowa at al. (2004)
CO used in chemical synthesis	Alakawa et al. (2001)
100_2 used in chemical synthesis	

Commercial Uses of CO₂

- 110 million tons of CO₂ for chemical synthesis
 - Urea (chiefly, 90 million ton of CO₂)
 - Methanol (1.7 million tons of CO₂)
 - Polycarbonates
 - Cyclic carbonates
 - Salicylic acid
 - Metal carbonates

Surplus Carbon Dioxide

Ammonia plants produce 1.2 million tons per year in lower Mississippi River corridor

Methanol and urea plants consume 0.15 million tons per year

Surplus high-purity carbon dioxide 1.0 million tons per year vented to atmosphere

Greenhouse Gases as Raw Material

- Intermediate of fine chemicals for the chemical industry
 -C(O)O-: Acids, esters, lactones
 -O-C(O)O-:Carbonates
 -NC(O)OR-: Carbamic esters
 -NCO: isocyanates
 - -N-C(O)-N: Ureas
- Use as a solvent
- Energy rich products CO, CH₃OH

From Creutz and Fujita, 2000

Catalytic Reactions of CO₂ from Various Sources

Hydrogenation

$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$	r
$2\text{CO}_2 + 6\text{H}_2 \rightarrow \text{C}_2\text{H}_5\text{OH} + 3\text{H}_2\text{O}$	e
$\text{CO}_2 + \text{H}_2 \rightarrow \text{CH}_3 - \text{O-CH}_3$	C

methanol
ethanol
dimethyl ether

Hydrolysis and Photocatalytic Reduction

 $\begin{array}{l} \mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O} \rightarrow \ \mathrm{CH}_3\mathrm{OH} + \mathrm{O}_2\\ \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} \rightarrow \ \mathrm{HC} = \mathrm{O} \text{-OH} + 1/2\mathrm{O}_2\\ \mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O} \rightarrow \mathrm{CH}_4 + 2\mathrm{O}_2 \end{array}$

Hydrocarbon Synthesis

 $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$ $2CO_2 + 6H_2 \rightarrow C_2H_4 + 4H_2O$

methane and higher HC ethylene and higher olefins

Carboxylic Acid Synthesis

$CO_2 + H_2 \rightarrow HC=O-OH$	formic acid
$CO_2 + CH_4 \rightarrow CH_3 - C = O - OH$	acetic acid

Other Reactions

 CO_2 + ethylbenzene \rightarrow styrene

 $CO_2 + C_3H_8 \rightarrow C_3H_6 + H_2 + CO$ dehydrogenation of propane

 $\rm CO_2$ + $\rm CH_4 \rightarrow 2CO$ + $\rm H_2$ reforming

Graphite Synthesis

 $CO_2 + H_2 \rightarrow C + H_2O$

$$\begin{array}{c} \mathsf{CH}_4 \rightarrow \ \mathsf{C} + \mathsf{H}_2 \\ \mathsf{CO}_2 + 4\mathsf{H}_2 \rightarrow \mathsf{CH}_4 + 2\mathsf{H}_2\mathsf{O} \end{array}$$

Amine Synthesis

 $CO_2 + 3H_2 + NH_3 \rightarrow CH_3 - NH_2 + 2H_2O$

methyl amine and

higher amines

Application of the System to Chemical Complex in the Lower Mississippi River Corridor

- Base case
- Superstructure
- Optimal structure

Base Case of Actual Plants

Plants in the lower Mississippi River Corridor, Base Case. Flow Rates in Million Tons Per Year

Processes in the Superstructure

Processes in Superstructure	
Processes in Base Case	Electric furnace process for phosphoric acid
Ammonia	HCI process for phosphoric acid
Nitric acid	Ammonium sulfate
Ammonium nitrate	SO ₂ recovery from gypsum process
Urea	S & SO ₂ recovery from gypsum process
UAN	Acetic acid – new CO2-CH4 catalytic
Methanol	process
Granular triple super phosphate	
MAP & DAP	
Power generation	
Contact process for Sulfuric acid	
Wet process for phosphoric acid	
Acetic acid-conventional process	

Superstructure

Superstructure Characteristics

Options

- Three options for producing phosphoric acid
- Two options for producing acetic acid
- One option for sulfuric acid
- Two options for recover sulfur and sulfur dioxide
- New plants for

ammonium sulfate recover sulfur and sulfur dioxide

Mixed Integer Nonlinear Program

- 594 continuous variables
 - 7 integer variables
- 505 equality constraint equations for material and energy balances
 - 27 inequality constraints for availability of raw materials demand for product, capacities of the plants in the complex

Raw Material and Product Prices

Raw Materials	<u>Cost</u>	<u>(\$/mt)</u>	Raw Materials	<u>Cost (</u>	<u>\$/mt)</u>	<u>Produ</u>	<u>cts</u>	Price (\$/mt)
Natural Gas		245	Market cost for sho	rt term		Ammo	onia	190
Phosphate Rock			purchase			Metha	inol	96
wet process	6		Reducing gas			Acetic	Acid	623
electrofurna	ace	24	Wood gas			GTSP	1	
HCI proces	S	25	Sustainable Costs a	and Cre	<u>edits</u>	MAP		180
GTSP proc	ess ⁷	30	Credit for CO ₂	1394	6.50	DAP	4.40	
HCI			Consumption			4N0	O_3^{142}	
Sulfur			Debit for CO ₂		3.25	UAN	405	
Frasch			Production 634			Urea	1653	154
Claus		38	Credit for HP Stean	n		H ₃ PO	4440	
C electrofurnace	40	760	Credit for IP Steam		6.4	$(NH_4)_2$	$_{2}30_{4}$	187
50	42			4.0				
00			Credit for gypsum	10			320	
			Consumption					
			Debit for gyps h	_	2.5			
			Production	5				
			Debit for NO _x					
			Production					

Comparison of Base Case and Optimal Structure

		Base case		Optimal structure	
Profit (U.S.\$/year)		148,087,243		246,927,825	
Environmental cost (U.S.\$/year)		179,481,000		123,352,900	
Sustainability cost (U.S.\$/year)		-17,780,800	energy	-16,148,900	energy
Plant name	Capacity (mt/year)	Capacity	requirement	Capacity	requirement
	(upper-lower bounds)	(mt/year)	(TJ/year)	(mt/year)	(TJ/year)
Ammonia	329,030-658,061	647,834	3,774	658,061	3,834
Nitric acid	0-178,547	178,525	-649	89,262	-324
Ammonium nitrate	113,398-226,796	226,796	116	113,398	26
Urea	49,895-99,790	99,790	127	49,895	63
Methanol	90,718-181,437	90,719	1,083	90,719	1,083
UAN	30,240-60,480	60,480	0	60,480	C
MAP	0-321,920	321,912		160,959	
DAP	0-2,062,100	2,062,100	2,127	1,031,071	1,063
GTSP	0-822,300	822,284	1,036	411,150	518
Contact process sulfuric acid	1,851,186-3,702,372	3,702,297	-14,963	2,812,817	-11,368
Wet process phosphoric acid	697,489-1,394,978	1,394,950	7,404	697,489	3,702
Electric furnace phosphoric acid	697,489-1,394,978	na	na	0	C
HCI to phosphoric acid	697,489-1,394,978	na	na	0	C
Ammonium sulfate	0-2,839,000	na	na	1,295,770	726
Acetic acid (standard)	0-8,165	8,165	268	0	C
Acetic acid (new)	0-8,165	na	na	8,165	92
SO2 recovery from gypsum	0-1,804,417	na	na	0	C
S & SO2 recovery from gypsum	0-903,053	na	na	0	C
Ammonia sale		0		0	
Ammnium Nitrate sale		218,441		105,043	
Urea sale		39,076		3,223	
Wet process phosphoric acid sale		13,950		6,975	
Methanol sale		86,361		90,719	
Total energy requirement from fuel gas			2,912		1,344

Comparison of Acetic Acid Processes

Process	Conventional Process	New Catalytic Process
Raw Materials	Methanol,	Methane,
	Carbon Monoxide	Carbon Dioxide
Reaction Condition	450K, 30bar	350K, 25bar
Conversion of methane	100%	97%
Equipment	reactor,	reactor,
	flash drum,	distillation column
	four distillation columns	

Production Costs for Acetic Acid

Moulijn, et al., 2001

Plant Production Cost, (cents per kg)	Methanol Carbon Monoxide	Methane Carbon Dioxide
Raw materials	21.6	21.6
Utilities	3.3	1.7
Labor	1.2	1.2
Other (capital, catalyst)	10.1	10.1
Total Production Cost	36.2	34.6

Current market price 79 cents per kg

Catalytic Process for Acetic Acid

Capacity: 100 million pound per year of acetic acid
 36,700 tons per year of carbon dioxide raw material
 Potential Savings

Reduction in utilities costs for process steam \$750,000

Energy savings from not having to produce this steam

275 trillion BTUs per year

Reduction in NOx emissions base on steam and power generation by cogeneration

3.5 tons per year

Reduction in carbon dioxide emissions

12,600 tons per year from the steam production

36,700 tons per year conversion to a useful product

Develop Process Information for the System

- Simulate process using HYSYS and Advanced Process Analysis System.
- Estimate utilities required.
- Perform economic analysis.
- Obtain process constraint equations from HYSIS and Advanced Process Analysis System.
- Maximize the profit function to find the optimum process configuration with the System.
- Incorporate into superstructure.

HYSYS Process Flow Diagram for Acetic Acid Process

Advanced Process Analysis System

Fig. 1 Overview of Advanced Process Analysis System

Reactor Analysis

Energy Integration – Pinch Analysis

Pollution Assessment

Waste Reduction Algorithm (WAR) and Environmental Impact Theory

Pollution Index

I = wastes/products = - ($\Sigma Out + \Sigma Fugitive$) / ΣP_n

Potential Environmental Impact

$$\Psi_k = \sum_l \alpha_l \Psi_{k,l}^s$$

 α_{I} relative weighting factor

 $\Psi^{s}_{k,l}$ units of potential environmental impact/mass of chemical k

Conclusions

- The System has been applied to an extended agricultural chemical complex in the lower Mississippi River corridor
- Economic model incorporated economic, environmental and sustainable costs.
- An optimum configuration of plants was determined with increased profit and reduced energy and emissions
- For acetic acid production, new catalytic process is better than conventional process based on energy savings and the reduction of NO_x and CO₂ emissions.

Conclusions

- Based on these results, the methodology could be applied to other chemical complexes in the world for reduced emissions and energy savings.
- The System includes the program with users manuals and tutorials. These can be downloaded at no cost from the LSU Mineral Processing Research Institute's web site www.mpri.lsu.edu

Future Work

- Add new processes for carbon dioxide
- Expand to a petrochemical complex in the lower Mississippi River corridor
- Add processes that produce fullerines and carbon nanotubes